

Operation And Monitoring Of Adsorptive Arsenic Removal Systems

EPA Arsenic Workshop
Cincinnati, OH
August 2004
Glen Latimer

Daily Operation Monitoring

- Flow monitoring
- Pressure drop monitoring
- Chemical addition monitoring
- Arsenic performance monitoring

Flow Monitoring -Higher Than Design Flow

- Short EBCT
- Change in breakthrough time
- Change in breakthrough slope

Flow Monitoring -Lower Than Design Flow Effects

- Uneven distribution
- Channeling and wall effects
- Low flow indicating fouling

Pressure Drop Monitoring

- Manual pressure gauges or electronic transmitters can be used
- Suspended solids in feed water (media fouling)
- "Mud ball" forming
- Channeling
- Media fines collecting on lower distributor
- Insufficient flow
- Damage to underdrain
- Media loss

Chemical Monitoring - Chlorine

- Chlorine feed and monitoring
- Chemical storage level
- Residual monitor maintenance
- Loss of oxidation / As+3 leakage

Online Chlorine Monitor

Chemical Monitoring - pH Adjust

- pH Adjustment
- Chemical storage level
- Probe cleaning and calibration
- Loss of pH control / arsenic
 leakage

Online pH Monitor

Arsenic Analysis

- Lab analyses
 - Atomic Adsorption (AA)
 - Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
- Detection limits
 - AA: 2.0 ppb
 - ICP-MS: <0.50 ppb
- Location
- Frequency

Atomic Absorption (Graphite Furnace)

ICP Mass Spectrophotometer

Arsenic Field Test Kits

- Valuable for piloting and plant optimization
- Limitations
- Accuracy

Arsenic Analytical Comparison

Future On-line Arsenic Analyzers

- Several technologies currently under development
- Extremely valuable in plant optimization as well as monitoring for compliance
- Elimination of 3rd party laboratory testing will result in cost savings for a utility

Arsenic Adsorptive System Control Panel

- PLC based controls
- Minimal automation provides for automatic backwashes
- PID control loop for pH control

Four Column Arsenic Adsorptive Pilot System

- 4 separate column allow for head-to-head testing of different media
- Manual system with instantaneous and totalizing flow meters
- Chemical injection point for oxidant and pH control

Valley Vista Arsenic Adsorption System

- 37 gpm lead/lag design
- PLC controls and actuated valves control basic start/stop and backwash functions
- Backwash waste sent to holding tank and settled water and recycled to raw water feed

Automated pH control

Valley Vista Arsenic Adsorption System

